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Attempts t o  induce oxide displacement r e a c t i o n s  by i n e r t  anneal ing 

of preoxidized samples were unsuccessful  due t o  t h e  formation of A1,0,  

and N i T i O , .  These compounds formed i n  l i e u  of N i O  which e x i s t e d  to 

only a minor e x t e n t .  Subsequent ox ida t ion  of p re t r ea t ed  samples a t  

e i t h e r  1000 or l l O O ° C  showed a g ross  d i f f e r e n c e  i n  oxide morphology. 

I n t e r n a l  ox ida t ion  and deep pene t r a t ion  of t h e  oxide i n t o  the  a l l o y  

occurred a t  1000°C, whereas no i n t e r n a l  ox ida t ion  occurred a t  l l O O ° C .  

Improvement of ox ida t ion  r e s i s t a n c e  i s  d iscussed  i n  terms of high- 

temperature pref i lming  a t  l l O O ° C  i n s t e a d  of by t h e  o r i g i n a l l y  proposed 

displacement r e a c t i o n s .  
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SUMMARY 

IN-100 w a s  subjected t o  a series of pre t rea tments  p r i o r  t o  oxida- 

t i o n  a t  e i t h e r  1000 or l l O O ° C .  

var ious  times a t  8OO0C,  which gene ra l ly  r e s u l t e d  i n  t h e  formation of 

t h i n  f i l m s  c o n s i s t i n g  mainly of Al,O, and N i T i O , ,  al though it  had pre- 

v ious ly  been repor ted  t h a t  t h e s e  f i l m s  were p r i m a r i l y  N i 0 . l  I n e r t  

anneals  were performed a t  e i t h e r  1000 or llOO°C f o r  var ious  times, 

o s t e n s i b l y  t o  enable  displacement r e a c t i o n s  t o  occur such t h a t  t he  more 

r e a c t i v e  component C r  would reduce t h e  base metal oxide N i O  t o  form 

Cr,O,. Although displacement r e a c t i o n s  d i d  not take  place,  

The i n i t i a l  s t e p  w a s  p reoxida t ion  f o r  

t h e r e  w e r e  some s i g n i f i c a n t  s t r u c t u r a l  and morphological changes i n  

t h e  oxides  s c a l e s ,  which formed dur ing  subsequent ox ida t ion  a t  1000 

and l l O O ° C ,  t h a t  could be a t t r i b u t e d  t o  t h e  i n e r t  anneals .  

ox ida t ion  occurred a t  1000°C, forming a zone of A1,0, p a r t i c l e s ,  whereas 

ox ida t ion  a t  l l O O ° C  r e s u l t e d  i n  continuous f i l m s ,  which were more pro- 

t e c t i v e  than t h e  s c a l e s  conta in ing  t h e  zone of i n t e r n a l l y  oxidized 

p a r t i c l e s .  This effect was a t t r i b u t a b l e  t o  t h e  i n e r t  anneals, f o r  

similar ox ida t ion  tests' without any pre t rea tments  r e s u l t e d  i n  

ex tens ive  i n t e r n a l  ox ida t ion  a t  both ox ida t ion  temperatures .  

I n t e r n a l  

Extensive s p a l l i n g  of t h e  f i l m s  occurred dur ing  oxida t ion  a t  both 

1000 and l l O O ° C .  If t h i s  problem could be solved,  pre t rea tments  might 

o f f e r  a means of reducing t h e  ox ida t ion  r a t e  of IN-100. 

1 





I NTFtODUC T I  ON 

Some d i l u t e  binary a l l o y s  conta in ing  

RLMEB, 

a more oxid izable  element 

as t h e  a l l o y i n g  a d d i t i o n  form t h e  oxide of t h e  more noble metal f i r s t  

and subsequently t h a t  of t h e  less noble metal. The t i m e  requi red  t o  

form t h e  second oxide depends on many factors, but  i n  many cases  i t  

forms by i n t e r n a l  ox ida t ion .  Another g e n e r a l i z a t i o n  i s  t h a t  t h e  

second oxide i s  more p r o t e c t i v e  t h a n  the  oxide of t h e  more noble metal. 

I t  would then  fo l low t h a t  any process t h a t  allowed t h e  less noble metal 

oxide t o  form quickly would o f f e r  a means f o r  i nc reas ing  the  ox ida t ion  

r e s i s t a n c e  of t h e  a l l o y .  

not s tud ied  ex tens ive ly .  

t h e  parabol ic  rate cons t an t s  f o r  a lpha  b ras ses  as wel l  as for  an a l l o y  

of 62Cu-38Ni as a r e s u l t  of i n e r t  isothermal  anneals  a f t e r  an  i n i t i a l  

ox ida t ion  per iod.  Metallographic s e c t i o n s  of t h e  oxides  d e f i n i t e l y  

e s t ab l i shed  t h a t  t h e  fol lowing displacement r e a c t i o n s  occurred i n  

Cu-Zn and i n  Cu-Ni, r e spec t ive ly :  

This  c o r o l l a r y  has  been p red ic t ed2 t3  although 

Levin and Wagner4 found a marked reduct ion  i n  

Zn + Cu20 = 2Cu + ZnO 

N i  + Cu20 = 2Cu + N i O  

An a l l o y  of 85Cu-15Zn exhib i ted  a 14-fold reduct ion  i n  t h e  ox ida t ion  

r a t e  of 7OO0C a f t e r  a 1-hour i n e r t  isothermal  anneal .  

Nickel-base and cobalt-base a l l o y s  almost always conta in  chromium 

a d d i t i o n s  (as w e l l  as numerous o t h e r  e lements)  and form Cr,O, as a 

major c o n s t i t u e n t  of t h e  p r o t e c t i v e  oxide f i l m .  A s  i n  t he  case of 

copper-base a l loys,  binary a l l o y s  of N i - C r  and Co-Cr a l s o  form t h e  

base metal oxides  i n i t i a l l y ,  even though n icke l  and coba l t  are 

considerably less a c t i v e  toward oxygen than i s  chromium. I t  would 

thus  appear t h a t  both systems should be analogous t o  t h e  Cu-Zn and 

t h e  Cu-Ni systems i n  t h a t  a displacement r e a c t i o n  i n  t h e  oxide f i l m  

would enable  C r 2 0 3  t o  form sooner wi th  a r e s u l t a n t  decrease i n  t h e  

ox ida t ion  rate. 

3 



Superal loys such a s  IN-100 con ta in  approximately 4 t o  5% of both 

aluminum and t i t an ium i n  a d d i t i o n  t o  t h e  chromium. Both of t hese  

elements a r e  very s t rong  oxide formers, even more so than  chromium, and 

would be expected t o  reduce dur ing  i n e r t  anneal ing any N i O  or COO t h a t  

formed i n i t i a l l y  on n i cke l  and coba l t  base a l loys ,  r e spec t ive ly .  I t  had 

been repor ted  t h a t  IN-100 ac t ed  somewhat l i k e  N i - 1 O C r  dur ing the  i n i t i a l  

s t ages  of ox ida t ion  i n  that  N i O  was the  f i r s t  oxide t o  form.' Based on 

t h i s  observa t ion  and the  r e s u l t s  of Levin and Wagner, i t  w a s  hoped t h a t  

s u i t a b l e  i n e r t  anneals  would al low displacement r eac t ions  t o  occur i n  

the  s c a l e s  of t h i s  a l l o y  and thereby reduce the  oxida t ion  r a t e .  

4 



EXPERIMENTAL PROCEDURES 

Investment-cast samples of IN-100 were obtained from the Misco 

Division of Howmet Corp. in the form of bars 1 in. ,x 8 in. x 6 in., 
having a composition of 

Cr 10.25% Ti 4.68% Mn <0.1 

Co 15.15 V 0.79 Fe 0.07 

Mo 3.20 c 0.18 B 0.012 

A1 5.52 Si <0.1 Ni . Balance 

Samples for oxidation were cut from the bars and electropolished 

in a solution of 60% H,P04 - 40% H,S04 containing 10 g CrO,/liter. 

All samples were then preoxidized fo r  either two or seven days at 

800°C. 

tubes and subjected to inert anneals at either 1000 or llOO°C. 

Oxidation was performed in a Cahn recording microbalance which was 

previously described.5 Various X-ray diffraction metallographic, and 

electron microprobe analyses were performed after oxidation on selected 

samples. 

The preoxidized samples were encapsulated in vacuum in Vycor 

5 
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RESULTS 

Treatments were designed so t h a t  t he  following sequences could be 

s tud ied  : 

Preoxidat ion(  _ .  'C) . I n e r t  Anneals( "C) Oxidation( "C) 

2 days 800 1000 1000 

2 days 800 1000 1100 

2 days 800 1100 1000 

2 days 800 1100 1100 

7 days 800 1000 1000 

7 days 800 1000 1100 

7 days 800 1100 1000 

7 days 800 1100 1100 

Data f o r  k i n e t i c s  of ox ida t ion  a r e  shown f o r  f i v e  of the t r e a t -  

ments i n  Figs .  1-5. Samples that  were subjected t o  the  t reatments  

f o r  which d a t a  are not given exh ib i t ed  too  much s p a l l i n g  during 

ox ida t ion  t o  enable  meaningful curves t o  be drawn. Further  complica- 

t i o n s  e x i s t e d  due t o  the lack of r e p r o d u c i b i l i t y  i n  d u p l i c a t e  or 

t r i p l i c a t e  samples, However, i n  s p i t e  of t he  d i f f i c u l t i e s ,  some t rends 

were apparent .  

For samples preoxidized 2 days a t  8OO0C, ox ida t ion  r e s i s t a n c e  a t  

1000°C w a s  improved s l i g h t l y  when t h e  i n e r t  anneal  was performed 

a t  1100°C rather than a t  1000°C. When a l l  o the r  condi t ions were con- 

s t a n t ,  e.g., ox ida t ion  a t  1000°C a f t e r  a n  i n e r t  anneal a t  1000°C; a n  

inc rease  i n  the  preoxidat ion time from two t o  seven d a y s  had v i r t u a l l y  

no e f f e c t ,  However, t h e  longer preoxidat ion time increased the  oxida- 

t i o n  r a t e  f o r  samples annealed a t  1100°C and oxidized a t  1000°C.  

summary, f o r  samples oxidized a t  1000°C, the  time f o r  the preoxidat ion 

and the  temperature of the i n e r t  anneal had e i t h e r  l i t t l e  or a s l i g h t l y  

d e l e t e r i o u s  e f f e c t  on the ox ida t ion  r e s i s t a n c e .  

I n  
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FIGURE 1 IN-100; PREOXIDIZED 7 DAYS 800°C; INERT ANNEAL AT 1100°C 
FOR VARIOUS TIMES; OXIDIZED AT 1000°C 
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Oxidation t e s t s  performed a t  l l O O ° C  were meaningless on a l l  but 

one batch of samples due t o  excessive s p a l l i n g .  Apparently t h e  t h i c k e r  

f i lms  formed a t  t h i s  temperature were more highly s t r e s s e d  than  those 

a t  1000°C, and t h e  s t r e s s e s  were more than s u f f i c i e n t  t o  rupture  and 

spa11 the  f i lms .  I t  is  i n t e r e s t i n g  t o  note, however, t h a t  t h e  weight 

gains  a t  t h e  longest time t e s t e d  during ox ida t ion  a t  l l O O ° C  were much 

lower than those a s soc ia t ed  with samples oxidized a t  1000°C.  al though 

t h e  i n i t i a l  weight gains  were higher a t  l l O O ° C .  

d e f i n i t e  l eve l ing  o u t  i n  the weight-gain-time curve w a s  occurring. I t  

appears, therefore ,  t h a t  i f  t he  s p a l l i n g  problem could be resolved, 

i n e r t  anneals  might have a f avorab le  e f f e c t  a t  l l O O ° C .  

I n  o t h e r  words, a 

X-Ray D i f f r a c t i o n  

To s t r i p  ox ida t ion  f i l m s  from the  samples, the oxides were scored 

and t h e  coated samples exposed t o  a s o l u t i o n  of bromine (10%)-ethyl 

a c e t a t e  a t  75OC. The metal was dissolved away from under the f i l m s  

which f l o a t e d  f r e e  and were co l l ec t ed ,  cleaned, and subjected t o  d i f -  

f r a c t i o n  a n a l y s i s .  The r e l a t i v e  i n t e n s i t i e s  of the var ious phases 

e x i s t i n g  i n  t h e  oxide s c a l e s  a f t e r  the displacement r eac t ions  a r e  

summarized i n  Table I. 

S t r u c t u r e  of Oxide Scales  

Some r e p r e s e n t a t i v e  micrographs and X-ray images of s c a l e s  formed 

during ox ida t ion  a t  1000 and l l O O ° C  

shown i n  Figs .  6-10. An apprec iab le  d i f f e r e n c e  e x i s t s  between s c a l e s  

formed by ox ida t ion  a t  1000°C and those formed by ox ida t ion  a t  llOO°C 

r ega rd le s s  of the pretreatment .  I n t e r n a l  ox ida t ion  occurred a t  t h e  

lower temperature r e s u l t i n g  i n  d i s c r e t e  p a r t i c l e s  of an aluminum-rich 

oxide, most l i k e l y  A 1 2 0 3 ,  whereas a t  l l O O ° C  i n t e r n a l  ox ida t ion  d id  

not occur.  Oxidation was heterogeneous a t  1000°C inasmuch as some 

a reas  on a given sample d id  not e x h i b i t  i n t e r n a l  oxidation, e.g. ,  

a f t e r  var ious pretreatments  are 

13 
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X-RAY IMAGES 
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a Cr-K 

AI-Ka 

Ti-Ka 

MICROGRAPH 

TA-7359-97 

FIGURE 6 STRUCTURE OF SCALE ON IN-I00 PREOXIDIZED 
2 DAYS AT 8OO0C AND OXIDIZED 7 DAYS AT 1000°C 
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Cr-K, 

AI-K, 

Ti-K, 

FIGURE 7 STRUCTURE OF SCALE ON IN-I00 PREOXIDIZED 
7 DAYS AT 800°C, INERT-ANNEALED 4 DAYS AT 
1000°C, AND OXIDIZED 7 DAYS AT 1000°C 
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Cr-K, 

AI-K, 

a Ti-K 

FIGURE 8 STRUCTURE OF SCALE ON IN-100 PREOXIDIZED 
7 DAYS AT 8OO0C, INERT-ANNEALED 4 DAYS AT 
IIOO°C, AND OXIDIZED 7 DAYS AT 1000°C 
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Cr-Ka 

Ti-Ka 

FIGURE 9 STRUCTURE OF SCALE ON IN-100 PREOXIDIZED 
7 DAYS AT 800°C, INERT-ANNEALED 4 DAYS AT 
llOO°C, AND OXIDIZED 4 DAYS AT 1100°C 
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Cr-Ka 

AI-Ka 

Ti-Ka 

FIGURE 10 STRUCTURE OF SCALE ON IN-100 PREOXIDIZED 
7 DAYS AT 800°C. INERT-ANNEALED 2 DAYS AT 
1000°C, AND OXIDIZED 7 DAYS AT llOO°C 
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Fig.  8. However, no i n t e r n a l  ox ida t ion  whatsoever was observed when 

ox ida t ion  was performed a t  l l O O ° C ,  and the oxides formed a t  t h i s  tempera- 

t u r e  were th inne r  than those formed a t  1000°C. 

X-ray image micrographs showed a very low n i c k e l  content  i n  the  

s c a l e s  f o r  a l l  condi t ions of ox ida t ion  and pretreatment.  The compact 

scales formed a t  1000°C cons i s t ed  of an o u t e r  t i tanium-rich phase, and 

aluminum-rich phase d i r e c t l y  below the outermost oxide, a chromium- 

r i c h  phase i n  the  middle ( c o n s t i t u t i n g  the major thickness  of t he  

scale) ,  and an innermost aluminum-rich oxide. The s c a l e s  overlying 

t h e  po r t ions  t h a t  underwent i n t e r n a l  ox ida t ion  consis ted of a t h i n  

o u t e r  l aye r  of n i c k e l  aluminate (?), a t h i n  t i tanium-rich phase, a more 

massive l aye r  of chromium oxide, and f i n a l l y  t h e  aluminum oxide 

p a r t i c l e s  i n  the zone of i n t e r n a l  oxidat ion.  

I n  the absence of i n t e r r u p t e d  anneals,  the main p o r t i o n  of t he  

scale was chromium-rich oxide containing t i tanium. The i n t e r n a l l y  

oxidized zone containing aluminum oxide w a s  below t h i s  l aye r .  I n  a l l  

cases ,  s i g n i f i c a n t  chromium d e p l e t i o n  occurred i n  the  zone of i n t e r n a l  

oxidat ion.  The i n t e r m e t a l l i c  compound p a r t i c l e s  i n  t h e  a l l o y  i t s e l f  

were t i tanium-rich.  A l l  of t h e  o t h e r  elements scanned--chromium, 

aluminum, and nickel--appeared t o  be depleted i n  these p a r t i c l e s .  

Samples oxidized a t  l l O O ° C  gene ra l ly  contained s c a l e s  t h a t  were 

predominantly A1,03,  w i t h  s m a l l  i s o l a t e d  p a r t i c l e s  of a t i tanium-rich 

phase wi th in  the alumina, Fig.  9, or s c a l e s  t h a t  were t r i p l e x  i n  nature .  

The t r i p l e x  s c a l e s  were t i tanium-rich on the  outs ide,  chromium-rich i n  

the center ,  and aluminum-rich a t  the oxide-metal i n t e r f a c e .  Each zone 

appeared t o  con ta in  the o the r  t h r e e  elements. Nickel w a s  no t i ceab ly  

absent  i n  a l l  zones of t hese  s c a l e s .  
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DISCUSS ION 

The b a s i s  f o r  the  present  s tudy  is  tha t  the  f i r s t  oxide t o  form 

i s  t h a t  of t he  base metal. Generally the base metal oxide i s  l e s s  

p r o t e c t i v e  than oxides formed by t h e  a l loy ing  add i t ions .  I n  o t h e r  

words, the  a l l o y i n g  add i t ions  are made t o  improve the  ox ida t ion  resist- 

ance by any of s e v e r a l  mechanisms, one of which i s  the formation of a 

completely d i f f e r e n t  oxide. There is  a c e r t a i n  t i m e  period required 

t o  form the  new oxide i f  the t o t a l  amount of s o l u t e  is below some 

c r i t i c a l  l e v e l  (about 2530% C r  i n  N i - C r  a l l o y s ) .  

I f  some t reatment  can be performed so tha t  the des i r ed  oxide w i l l  

form f a s t e r  than normally expected, a marked improvement i n  ox ida t ion  

r e s i s t a n c e  can be achieved. Such a treatment is  an i n e r t  anneal t h a t  

permits  a displacement r e a c t i o n  t o  occur as i n  the  case of ox ida t ion  

of Cu-Zn and Cu-Ni a l l o y s . 2 , 3  On t h e  basis t h a t  N i O  was the f i rs t  and 

most s i g n i f i c a n t  oxide t o  form during t h e  ox ida t ion  of IN-100,l i t  was 

l o g i c a l  t o  expect t h a t  displacement r e a c t i o n s  might o f f e r  the  possi-  

b i l i t y  of reducing the ox ida t ion  r a t e  of t h i s  a l l o y .  Unfortunately, 

i t  was found that  o the r  oxides, notably A l , 0 3 ,  formed during t h e  low 

temperature preoxidat ion treatment,  and t h a t  the aforementioned observa- 

t i o n  of N i O  forming as t h e  i n i t i a l  oxide was wrong. Consequently, t he  

d i scuss ion  of displacement r e a c t i o n s  per  se f o r  a l l o y s  i n  t h i s  s y s t e m  

i s  not s i g n i f i c a n t .  On the  o the r  hand, i t  was found se rend ip i tous ly  

t h a t  marked d i f f e r e n c e s  i n  oxide morphology ex i s t ed ,  depending upon 

ox ida t ion  and preoxidat ion cond i t ions .  The main d i f f e r e n c e s  were those 

of i n t e r n a l  ox ida t ion  versus no i n t e r n a l  ox ida t ion  which can lead t o  

s i g n i f i c a n t  d i f f e r e n c e s  i n  degradat ion of metals during oxidat ion.  

T h i s  s u b j e c t  w i l l  be the main p o i n t  considered. 
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I n t e r n a l  Oxidation 

A s  mentioned previously,  t he  a d d i t i o n  of an a l loy ing  element t o  

improve ox ida t ion  r e s i s t a n c e  u s u a l l y  is performed with t h e  expectat ion 

t h a t  t h i s  element w i l l  form a continuous f i l m  of i t s  own oxide. The 

s t a b l e  oxide s o  formed is  presumed t o  have low d i f f u s i v i t i e s  of both 

c a t i o n s  and anions,  and thus a marked decrease i n  the  ox ida t ion  rate 

i s  expected, However, t he  higher r e a c t i v i t y  of t he  added elements 

w i th  oxygen may under c e r t a i n  circumstances lead t o  i n t e r n a l  ox ida t ion  

of t he  so lu t e ,  i n  which case no e x t e r n a l  f i l m  of t h i s  oxide forms. In  

essence t h e  a d d i t i o n  o f f e r s  no protect ion,  and the  ox ida t ion  r a t e  w i l l  

remain high. A t r a n s i t i o n  from i n t e r n a l  ox ida t ion  t o  e x t e r n a l  oxide 

f i l m  formation occurs a t  a c r i t i c a l  composition t h a t  i s  oxygen pressure 

and temperature dependent.6 

decrease i n  the  ox ida t ion  ra te .  

The t r a n s i t i o n  is marked by a n  abrupt 

Two f a c t o r s  a r e  p a r t i c u l a r l y  important with r e s p e c t  t o  the  t r a n s i -  

t i o n ,  F i r s t ,  the  composition must exceed the  c r i t i c a l  value, and 

second, the  d i s s o l u t i o n  of oxygen i n  the  metal  must be prevented. 

f i r s t  of t hese  f a c t o r s ,  e.g., the c r i t i c a l  composition, is  a func t ion  

of both temperature and oxygen pressure,  hence pretreatments  a t  tempera- 

t u r e s  o the r  than t h e  ox ida t ion  temperature may provide t h e  r i g h t  

condi t ions t o  form an e x t e r n a l  f i lm.  

The 

Wasielewski' found i n t e r n a l  ox ida t ion  a t  a l l  temperatures s tudied,  

ranging from 1600'F (872'C) t o  2000'F (1093'C). The thickness  of the 

i n t e r n a l l y  oxidized zone ranged from approximately 2 microns t o  about 

50 microns f o r  samples oxidized 100 h r  a t  1600 and 2000'F, r e spec t ive ly .  

These values a r e  compared t o  those found i n  t h i s  s tudy of 30 microns 

a f t e r  168 h r  ox ida t ion  a t  lO0O'C and z e r o  microns a f t e r  168 h r  oxida- 

t i o n  a t  l l O O ° C .  The lack of any pretreatments  by Wasielewski r e s u l t e d  

i n  a n  inc reas ing  thickness  of the i n t e r n a l l y  oxidized zone with 

inc reas ing  temperature, whereas preoxidat ion a t  800'C el iminated 

i n t e r n a l  ox ida t ion  a t  1100'C. 
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The X-ray d i f f r a c t i o n  d a t a  i n  Table I show t h a t  numerous oxides 

formed during the preoxidat ion treatment a t  800°C but t h a t  the  A 1 2 0 3  

and NiTiO, phases predominated. The i n t e n s i t y  of Y i O  was weak; thus 

t h i s  oxide d i d  not e x i s t  as the  major phase of t h e . s c a l e .  Wi th  t h e  

except ion of one case, i n e r t  anneals  a t  e i ther  1000 or l l O O ° C  r e s u l t e d  

i n  t h e  i n t e n s i f i c a t i o n  of the  r e f l e c t i o n s  from A 1 2 0 3 .  The appearance' 

of N i 2 T i 4 0  was a l s o  noted (except f o r  the same except ion) .  I t  thus 

appears that a d d i t i o n a l  A 1 2 0 3  formed during the  i n e r t  anneal, pre- 

sumably by the  reduct ion of NiTiO, by aluminum, the  N i T i O ,  being t h e  

only source of oxygen. The important a spec t  t o  be considered i n  t h i s  

r e a c t i o n  i s  t h e  morphology of t h e  A 1 2 0 3  f i l m  formed during t h i s  

t reatment .  I f  the  f i l m  were continuous, i t  would present  a b a r r i e r  

t o  oxygen d i f f u s i o n  and thereby l i m i t  i n t e r n a l  ox ida t ion  during sub- 

sequent ox ida t ion  a t  higher temperatures.  On the  o the r  hand, i f  the 

f i l m  were not continuous, i n t e r n a l  ox ida t ion  would occur.  Experimentally 

i t  was observed tha t  i n t e r n a l  ox ida t ion  occurred a t  1000°C but not a t  

l l O O ° C .  I t  i s  the re fo re  poss ib l e  t ha t  e i t h e r  of two processes took 

place.  F i r s t ,  a continuous f i l m  e x i s t e d  but subsequently degraded a t  

1000°C. Second, a noncontinuous f i l m  ex i s t ed  which "healed" a t  l l O O ° C  

t o  form a continuous f i l m ,  thus  preventing i n t e r n a l  oxidat ion.  Unfortun- 

a t e l y ,  the extremely t h i n  f i l m s  formed during the  preoxidat ion were not 

amenable t o  metallographic examination, and t h i s  point  cannot be 

resolved p resen t ly .  

The optimum s c a l e  t o  minimize i n t e r n a l  ox ida t ion  and a l s o  t o  

provide maximum o v e r a l l  ox ida t ion  r e s i s t a n c e  i s  A 1 2 0 , .  I on ic  d i f -  

f u s i v i t i e s  i n  t h i s  oxide are  low,'^^ although there i s  l i t t l e  or no 

knowledge as t o  what e f f e c t  doping w i t h  the var ious a l l o y i n g  elements 

p re sen t  i n  IN-1000 would have on the d i f f u s i v i t i e s  ( t h e r e  i s  l i t t l e  

doubt t h a t  a l l  of the  oxides formed i n  t h i s  s y s t e m  con ta in  most or 

nea r ly  a l l  of the o t h e r  elements t o  some e x t e n t ) .  Figure 10 shows a 

' s c a l e  t h a t  i s  predominately alumina, t he  presence of which i s  a s soc ia t ed  

w i t h  good ox ida t ion  r e s i s t a n c e .  
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The complexity of t he  a l l o y  precludes a determinat ion of the  

c r i t i c a l  aluminum concent ra t ion  required t o  form a continuous f i l m  

during low temperature oxida t ion ,  I f  t h i s  system is analogous t o  

the  s i lver- indium system on which the  c l a s s i c a l  work on i n t e r n a l  

ox ida t ion  has been performed,8 the  c r i t i c a l  aluminum concent ra t ion  

a t  a given temperature w i l l  increase  w i t h  increas ing  oxygen pressure .  

I n  o t h e r  words, l o w  oxygen pressures  w i l l  be required t o  enable 

e x t e r n a l  ox ida t ion  t o  occur i n  which case  a continuous f i l m  would 

e x i s t .  Such a pretreatment  might o f f e r  more p ro tec t ion  than  

any o the r  t reatment  or oxida t ion  d i r e c t l y  w i t h  no pre t rea tment ,  
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